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Abstract

In this paper we discuss a general methodology for estimating the dis-
tribution of individual growth rates in a size-structured population using
aggregate population data. The method, for which rigorous theoretical
formulations have been developed, is presented in the context of an in-
verse problem methodology and its use is illustrated with application to
mosquitofish, Gambusia affinis, population in rice fields.

1 Introduction

In this paper, we present results using inverse problem techniques for estimation
of growth distribution in size-structured population models using aggregate pop-
ulation data. The models employed here are based on ideas initially discussed in
[BBKW], which entail models wherein growth rates may vary across individuals
of the population as well as with size and time.

These models are in contrast to the usual stochastic partial differential equa-
tion models as described for example in [FL1],[FL2],[FS] and in the next section.
Although they are not stochastic in the usual sense, they are probabilistic in
that one models growth, mortality, etc. via probability distributions across the
population.

Simulation studies were presented in [BBKW] to demonstrate that such ideas
could lead to population densities that exhibit dispersion and bimodality. Rig-
orous theoretical developments of the associated inverse problem technique and
initial illustrations with computational examples were given in [BF], [F1] and
[F2]. A survey of results and other references can be found in [B]. The general
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philosophy underlying our approach of using aggregate population data to esti-
mate individual rates is given (along with an application to susceptibility and
vaccination efficiency in populations) in [BFZ].

As detailed in earlier references, our efforts on such problems were initiated
in collaboration with marine biologists (specifically Lou Botsford and his col-
leagues) in studies related to the introduction of mosquitofish into rice fields, in
attempts to control mosquito populations without chemicals. To establish viable
control strategies, it is very important to have quantitative models which pre-
dict accurately the evolution of the populations. In the paper [BVWLKRC], the
mosquitofish population was modeled using the Sinko-Streifer (also called the
McKendrick-Von Foerster) model for size-structured population density evolu-
tion. As we shall discuss below, this leads to a number of conceptual difficulties.

2 Modeling Philosophy

There is a huge literature (we won’t even attempt to cite these here) on the mod-
eling of populations in the quantitatively oriented biological research literature.
The efforts range from modeling population growth, death, mortality in insects,
marine life, plants and animals to gene frequency mutation and drift, as well as
treatments of susceptibility to disease in vaccinated populations of humans. In
such a diverse scientific literature it is often difficult to discern an underlying
commonality. However, there are some usual features in much of the literature.
The modeling often relies on data about certain observables, while it is knowl-
edge about other nonobservable parameters that is of interest to investigators.
For example, one usually has total population (aggregate densities) counts in
models where growth, mortality and migration rates of a typical individual are
of most interest. Or one may have aggregate data on percent of a population
vaccinated, and numbers of those who fall ill and recover (or not) in studies of
disease prophylaxis. In the case of genetic studies one has data on phenotypes,
where it is gene frequencies and their changes that one wishes to understand.
A second feature of most modeling attempts is the presence of uncertainty.
This may arise in the model itself, in parameters in the model, in distribution
over the population of unobservable traits or characteristics. A conceptually im-
portant question is how to treat these uncertainties when attempting to extract
the maximum information about the population from the data. The standard
approach to treat probabilistic or stochastic aspects of population is through
the use of stochastic differential equations. A brief review of examples early on
in this approach was given by Fleming in [FL1], where he discussed distributed
parameter or partial differential equation models for geographically-structured
(including size or age-structured) populations. He also discussed population
genetics models (equations for the mean and the covariance of gene frequency
in spatially migrating populations — see [FL2],[FS]). Our focus here will be
on size-structured population models and our use of rate distribution models as
an alternative to stochastic differential equations. To put this in context of the
more standard approach, we introduce and discuss briefly the Fokker-Planck



size-structured model.

The Fokker-Planck equation is the basis of a stochastic size-structured model
[B1],[BTW] which is based on the assumption that movement from one size
class to another can be described by a Markov process. The “physiological age”
interpretation of the Fokker-Planck equation was first suggested by Weiss [W]; a
careful derivation based on the paradigm of Brownian motion of particles which
is applicable to growth processes is given in [O]. The Fokker-Planck equation,
under the assumption of a Markov transition for the growth process, is

Ou 0 1 62

1) A (M)t 2) = g5 (Mot Dut2)), (1)
where u(t,z) is the population density at time ¢ and size  and the moments
are given by

[e0]
M;(t,z) = Alggloé/_m(y—I)Jp(t,r;tJrAt,y)dy- (2)

The function p(t, z;¢ + At,y) is the probability density for the transition
from size z at time ¢ to size y at time ¢ + At; i.e., p(t,z;t + At,y)Az is the
probability that members in the size interval [z, z + Az] at time ¢ will move to
size y at time ¢ + At. The moments M7, M have probabilistic interpretations:
M is the mean (or first moment) of the rate of increase in size

Ml“’@zgizlof{%ﬁ‘“”},

where £[X] denotes the expected value of a random variable X, while M3 is
the second moment of the rate of increase in size

Ms(t,z) = Almg{ (z(t + Ai)t_ z(t)) }

Appropriate boundary conditions must be formulated for (1). Since

Myu — % (’\/2[2u) represents the population flux, we have

[Ml(t,:c)u(t,a:)— %(Mg(t,m)u(t,x))] o

= /xm K(t, z)u(t, z)dz (3)

o

[Ml(t,m)u(t,x)—aa—m(/\/iz(t,m)u(t,m))] T (4)

while the initial conditions are given by
u(to, z) = ®(z). (5)

Here z,, is maximum size, xg is the minimum size, and K is the fecundity
rate as explained below in our discussion of the Sinko-Streifer model.



The system (1), (3)-(5) comprises an initial-boundary value problem for
a transport-dominated diffusion process (the M; term is typically dominant
over the M term) that offers significant computational challenges. First, the
moments M7, My almost always (for the applications to populations) depend
on both ¢t and z and must be estimated; the expressions (2) are not helpful
since, in general, p is unknown. Moreover, even simulation with (1), (3)-(5)
is nontrivial. Traditional finite difference and finite element methods produce
erroneous oscillatory solutions. Thus the spline-based, fixed node methods first
proposed in [B1] are of very limited interest. However, high promise can be found
[BTW] in a moving node finite element technique first suggested in [H]. Even
so, estimation or inverse problems built on Fokker-Planck models are extremely
different computationally and have enjoyed limited use in the literature.

Our efforts to treat both unobservable individual parameters as well as a
certain amount of stochasticity is built upon the Sinko-Streifer model and thus
we briefly outline its features.

The classical Sinko-Streifer model, henceforth referred to simply as (SS), is
given by

%v(t, z)+ %(g(t, z)v(t,z)) = —p(t, z)v(t, z) t>tg,
v(0,2) = ®(2) << Ty ®)
gt mo)olt, o) = [ K, €)0(t, €)de
g(t,zm) =0

and simulates the time evolution of a population with respect to the size x of
the individuals. In our use of this model, the parameter z € [zg, 2] denotes
the length of the fish, and the function v represents the size density function so
that

N(t):/ v(t, z)dz (7)

is the number of fish in the population at time ¢ whose size is between a and b.
The function g represents the growth rate of the individuals,
dx(t)
dt

= g(t, ﬁ) )

so that in this simple model all individuals have the same growth rate. The last
condition in (6), g(¢,z,) = 0, indicates that growth ceases when individuals
reach maximum size x,,. The initial condition ® describes the initial size density
for the population. The function K is a fecundity kernel, and is used to express
the recruitment rate R(¢,v) = f;um K(t,&)v(t, £)dE. The mortality rate is given
by .

Difficulties arise, however, in applying the model (SS) to observed data since
the data often exhibit features that the model cannot simulate or predict. One
such phenomenon is a dispersion in size as time progresses. Another is that the
population begins with a unimodal density and in time develops into one with



a bimodal density. Both of these features are present in the mosquitofish data
(see [BBKW], [BVWLKRC], and the data plot in Figure 1).

This dispersion in size and the transition from a unimodal to a bimodal
density is qualitatively inconsistent with solutions of the Sinko-Streifer model
under biologically feasible assumptions on the model. We are able to capture
both phenomena with growth rate distribution (GRD) models.

2.1 GRD Models with Identical Initial Size Densities

Here we use a modification of the model (SS) (in actuality, a continuum of (SS)
across families of growth rates) which exhibits features present in the data. We
use as the aggregate population density (APD) the function

u(t, ) = /G o(t, 21 )dP(g), (8)

where G is a collection of growth rates and P is a probability measure on G.
This approach was first suggested in [BBKW]. As detailed in [BF], the resulting
model is rich enough to exhibit the phenomena of interest, namely, dispersion
and development of two modes from one. As also explained in [BF], measure
theoretic results allow us to approximate the continuum measure in (8) by a
discrete measure corresponding to a finite dimensional set of growth rates.

Briefly, we assume that we have a family G = {gjx}, j = 1,---, M1, k =
1,---, M5 of individual growth rates; individuals are grouped into the same
subpopulation if they have the same growth rate. The subpopulations grow
according to the (SS) with ¢ = g;i in (6). Here we take g;5(x) = rj(yx — ),
# =0 and K = 0. Note, however, that a generalization to allow distribution of
mortality and fecundity over subpopulations is readily achieved.

The size density for the subpopulation jk is given by v(¢, z; g;), and the
aggregate population density is given by

u(t,z) = Zv(t,fb;gjk)ij, (9)

ik

where p;; is the probability of an individual being in the jk subpopulation.
Note that this formulation embodies the assumption that each subpopulation
has the same initial size density, i.e., v(0, z; g;z) = ®(z) for all j, k.

We used the above outlined formulation in a least squares inverse problem
involving fitting several sets of field data {a(¢,z)}. The probabilities {p;;} for
1<j< M and 1<k < Myin (9) were estimated by solving the following
inverse problem:
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Here PM(G) is a finite dimensional approximation to the probability measure

space P(G) defined by

PYM(G)={P e P(G)IP =7 pjby, Y pix=1}
ik ik

where M = My x M3 and &,,, is the Dirac measure with an atom at g;z. We
denote by p the array that contains p;z, 1 < j < My, 1 <k < Ms, and set

N o
jkom = Z/ (tn, 2, 955)v(tn, 2; gom)d
n=1Y%0
N
bir = — Z/ Wtn, 2)v(tn, z; gj5)de
n=1v7T0

c= ii:/ﬁ:[ﬂ(tn,m)]%m .

Moreover, we define A and b to be the arrays that contain a;jzsm and bjp
respectively, for 1 < 7,4 < My and 1 < k,m < M.

The inverse problem (10) now becomes a quadratic programming problem in
which one minimizes pTAp+2pTb+c over PM(G). To include the equality
constraint, > p;rz = 1, we introduce the Lagrange multiplier A and solve the
unconstrained problem min F(p, A), where

F(p,\)=p"Ap+2p"b+c+ D> pjx—1]. (11)
ik

We used the “method of characteristics” based techniques discussed in [TKP]
to solve (6) for the densities v(t, z; g;x), which were calculated in parallel using
PVM software on six IBM RISC 6000 workstations. These densities were then
used with the IMSL subroutine DQP ROG to solve for the optimal solution
(p*, A*). Finally, the aggregate population density u(t,z) was determined by
substituting pj; into (9).



In the above parameter estimation problem, for each subgroup jk, a propor-
tioned initial size density ®(z)p;; was assumed. The Day 195 data (see Figure
1) was chosen so that

> vlto, wgipie = Y ®(x)pjk-
ik ik
Note that since the first data set is used here as the initial size density, it cannot
be used in solving the inverse problem. This leaves one less data set available
for use in estimating the optimal parameter set.

Frample 1: We present in the following an example which is typical of the
field-data fitting results. The fish were stocked on June 28, 1982 into four rice
paddies with parallel water flow. Each paddy had an outflow trap to measure
emigration. Measurements were taken weekly (two paddies one day and two the
next) with the use of fifteen traps per paddy. The total number of fish caught
was greater than or equal to the number actually measured.

The size distribution frequency for size class 7 is defined as f; = npy i/Nm,
where n,, ; is the number of fish measured in size class ¢, and N, is the total
number of fish measured.

The total population was divided into five hundred and twelve subpopula-
tions with

r; =02+1/31%4.8x(j—1) j=12..,32
v1 = 16/38, v9 = 22/38, v3 = 24/38,
v = 16/38+1/15%22/38 % (k — 1) k=4,..16.

The range for r; was chosen arbitrarily, while the y; were based on the field
data. The choice for y; = 16/38 was made by inspecting the data from Day
195. At z = 16mm, a significant decrease in the number of fish occurs, which we
interpreted as the smallest possible maximum length for some subpopulation.
We obtained 73 = 16/38 and v16 = 1.0 after normalizing against the largest
possible length, z; = 38mm, for the total population. The initial size density
®(z) (for all subpopulations) was approximated by interpolating the Day 195
data.

The computed results manifest dispersion and bimodality as we expected
(see Figure 1), with a residual of J; = 3.7626 x 10~*. Figures 2 and 3 illustrate
the probability densities and distribution respectively as a function of r and ~.

Although the computed results do provide dispersion and bimodality, the
mismatches between the computed solutions and the field data are still signifi-
cant. Furthermore, the discrepancies did not diminish as fast as hoped when we
increased the number of subpopulations, M = M; x M. The idea of varying
the initial size density among the subgroups became appealing.

2.2 GRD Models with Subpopulation Dependent Initial
Size Densities

A further refinement (and one which is appropriate for the mosquitofish popu-
lation presented here) entails a parameterization of the initial density
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®(z) = Ej,k djr(z) with ¢;r(z) = >, xe(2)apj k. Here x,(2) is the character-
istic function of the interval [y, 2¢41) corresponding to a partition 0 = zg =
z1 < 29 < - < &pm,+1 = 1, and we have normalized the size range [zg, ,,] to
[0,1]. If one solves (6) with g = g;5, ® = X, then v(t, z; gk, x¢) represents the
density for individuals with growth rate g;; that initially have size structure
density given by x;.

The subpopulation jk density is given by

u(t, x5 gjk) = Zv(t, 5 Gk, Xe) ek
‘

so that the aggregate population density is then given by

u(t,z) = vt xigin)pie = 3 > v(t @5 g6 xpikari e (12)

ik L gk

As before, we require the constraint Zj,k pir = 1. We denote a as the array
containing oy for 1 <7 < My, 1 <k < Myand 1 <{< Ms.

This formulation leads to a new inverse least squares problem with objective
function

J(p,a) = Z/O [u(tn, &) — @ty 2)|° da (13)

2

N 1 Ms
= 3 [ XXtttz xolpians — ilta, )| do
n=0Y0 |j & ¢=1

subject to ZM pjx = 1, and v(t, z; gjr, x¢) being the solution of (6) correspond-
ing to ¢ = g;5 and ® = y,. Minimizing (13) over both p and « requires solving
a nonlinear programming problem.

An alternative and simpler approach to directly solving (13) is to reduce the
nonlinear programming problem back to a quadratic programming problem.
This can be accomplished by eliminating either p or a from the minimization
process.

2.2.1 Minimizing Over a Only

One method for reducing (13) to a quadratic programming problem is to remove
p from the parameter estimation problem and simply minimize over «. That
is, if we can pre-determine a good choice for p, we can fix the probabilities p;;
in (13) and reformulate it as a quadratic programming problem with objective
function

F(a)=aTAa+2a"b +c. (14)

Here A is the M1 My;Ms x My MsMs array containing the elements

N 1
Akl gst = Z/ [U(tn,=’L‘;Q’jkaX£)ij][U(tn,I;gqs;Xt)qu]dl‘; (15)
n=0 0

10



b 1s the vector with elements

N 1
bire = E/ U(ty, 2)v(tn, ; gjk, Xe)Pjrd2, (16)
n=0 0

and
N 1
C:E/o [t 2)]%dz. (17)

A good way to pre-determine the probabilities p;y, is to first solve the problem
for (11) with identical initial size densities. We can then use the solutions p* as
the fixed probabilities in the arrays A and b.

A major advantage of this approach is that the formulation allows for differ-
ent initial size densities across subpopulations. Moreover, since the initial size
densities are not estimated directly with the first data set, all of the data sets
may be used in solving the inverse problem.

As before, we used “method of characteristics” based techniques, parallel
computation and the IMSL subroutine DQ P ROG to solve for the optimal so-
lution a*. The resulting ozZ k and the pre-determined p  were then substituted
into (12) to solve for u(, :E) corresponding to (p*, a*).

Ezample 2: In the following example, we use the 1982 field data as described
in Example 1. First the probability measures p;; were obtained by optimiz-
ing (11), where the total population was divided into thirty-two subpopulations
according to the following:

ri=0241/7T+48%(—1) =128

(18)
y1 = 16/38, 75 = 22/38, 3 = 24/38, 74 = 1.

As in Example 1, the Day 195 data was used as the initial size distribution
®(z) for all subgroups.

The computed probabilities p?, were then used in solving the reformulated
quadratic programming problem for (14) with subpopulation-dependent initial
size densities. The entire population was further divided into a total of six
hundred eight subpopulations, with r; and v as in (18) for j = 1,2,...,8,
k=1,2,34,and

Xe=[ze,20p1) = [1/19% (£ = 1),1/19%6)  £=1,...,19.

The intervals y; each correspond to a 2mm size class as seen in the field data.

The computed weights aj; . were then substituted into (12) along with
the precomputed pj, to obtain the aggregate population density u(t, z) (see
Figure 4). This calculated density gave a better fit to the field data than the fit
obtained in Example 1. Figures 5 and 6 illustrate the probability densities and
distribution respectively as a function of r and 7.

The overall residual was J; = 3.08780x10~*. Since the parameter estimation
carried out in Example 1 did not utilize the Day 195 data, we define a second

11
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residual J, which is taken only over Days 202, 209 and 216 of the data. This
provides a means of comparing the accuracy of Example 1 versus Example 2.

In this manner we obtained J, = 2.9305 x 10~5, which is quite an improve-
ment over J; = 3.7626 x 10~%.

2.2.2 TIterative Quadratic Programming

An alternative approach for simplifying the nonlinear programming problem
for (13) is an iterative process involving two separate quadratic programming
problems. The first of these quadratic programming problems is formulated by
minimizing (13) over p; while ay; i is held constant, and the second minimizes
over ay.;  while p;y is held constant. These quadratic programming problems

12
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can be solved in succession, creating an iterative process that progressively
improves upon p and a.

Since the variables ay; ; are associated with the initial size densities ¢;, we
can approximate ay,; ; using the initial time data. That is, we let

XZ:[IfﬂxZ-}—l) gzl,...’ME;’

subdividing the size classes in the same manner as the data. For each £, we then
set

ajr = (0, z)

for every j, k.
These values of aj ; can then be inserted as fixed quantities in (13) to arrive
at a quadratic programming problem with objective function

F(p,\)=p"Ap+2p b+ c+ A pjx—1]. (19)
ik

Here A is the MMy x My M, array with elements

N 1 M3 M
Ajkem = E/ [E U(tn,I;gjk,xz')ai;j,k][zv(tn,I;gzm,xz')ai;e,m]del‘,
n=0v0 ;=1 i=1
the vector b contains elements
N 1 Ms
bjr = Z/ ﬁ(tnaI)[Zv(tnaI;.qjkaXi)ai;j,k]dIa
n=0"0 i=1
and
N 1
c= Z/ [U(tn, )] dz.
n=0 0

Again we used the “method of characteristics” based techniques, paral-
lel computation and the IMSL subroutine DQP ROG to obtain the optimal
(p* X").

These probability measures p;fk may now in turn be used to solve a quadratic
programming problem over ag; ;. In fact, by holding p constant in the original
problem for (13), we have reduced the nonlinear programming problem to the
quadratic programming problem involving (14)-(17). From this we obtain the
optimal a*.

This process can be repeated, leading to the following iterative method:

1. Partition the size interval into subintervals {zs, o041}, £ = 1,2, ..., M3, so
that the subintervals correspond to the subdivisions of size classes in the
data. For each £, let ag,j = (0, z).

2. (a) Fori=0,1,..., let apjr = ai.j » and solve the quadratic program-
ming problem for (19) to obtain the optimal pzk

14



(b) With p; = pj»k for all j, k, solve the quadratic programming problem
for (14) to obtain the optimal ozz;;}k.
3. Stop iterating when |pt!—pi| < TOL; and |[u't1(0, z)—u’(0,z)| < TOLs,
for some user-specified tolerances TOL, and TOLs.

Our choice of the above stopping criteria was motivated by the structure
of our model. The p;; are probabilities associated with the subpopulations
gik, and enter the model through (9). We would like [p? — p*!| to be within a
specified tolerance. An additional stopping criterion should involve the variables
ay.j x, which are weights associated with the parameterization of the initial size
density ®(z) = Zj,k Yoo xe(x)agj . The individual ay; p themselves need not
converge upon iteration, but we would like the initial size densities to converge.
That is, we would like
|u'(0, ) — u't(0,z)| < TOL,, for some specified tolerance TO L.

Ezample 3: In this example we continue to use the 1982 field data as detailed
in Example 1. To initialize the iterative process, we approximated the weights
ag;j,k by the initial data from Day 195. That is, we let

Xe = [ze,201) = [1/19% (£ —1),1/19%6)  £=1,...,19,

and for each £ we set a?;j,k = u(0,z,) for all j, k.
We divided the total population into six hundred eight subpopulations with

ri=034+1/3%x47«(j—1) j=1234
vi = 16/38, v, = 22/38, 75 = 24/38, (20)
ve = 16/38 +1/7%22/38 (k—1)  k=4,..8.

The variables a?;j,k were then inserted into (19) and the quadratic program-
ming problem was solved for the probability measures p?k. The corresponding
aggregate population density u’(t, z) was formed by substituting ag;jyk and pJQk
into (12).

These computed solutions u°(¢, z) did not fit the field data as well as any
of the previous computed solutions (see Figure 7), returning a residual of J§ =
0.0020, and a residual over Days 202, 209 and 216 of JNB? = 0.0018.

Continuing the iterative process, we used p?k to optimize (14) for a%;jyk.
This led to a new set of computed solutions u’(¢,z), which fit the field data
better than the previous solution set (see Figure 7), and returned the improved
residuals Ji = 5.6266 x 10~* and J1 = 2.1284 x 10=%. We also found that
|u®(0, z) — u'(0, z)|5 = 0.0600.

Using a%;jyk we then optimized (19) for pjl»k. The resulting u%(¢, z) did not
appear to improve the fit to the field data, as illustrated by the residuals JZ =
5.6266 x 10~* and jg = 2.1284 x 10~*. In addition, we noted that
[p® — plls = 1.9451 x 107, which also suggested that the latest iteration did
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Figure 7: Computed results u’(¢, z) (- -) and ul(¢,z) (- -) vs. field data (—) for
Example 3.

not bring much improvement. The computed solutions u%(¢, z) are not shown
here since the difference between ul(¢,2) and u?(t, z) are not perceptible to the
eye at this resolution.

Finally, we used pjl-k to optimize (14) for az;jyk. The resulting fit to the
field data did improve slightly over the previous fit, returning the residuals
J3 = 4.6647 x 10™* and J3 = 1.4301 x 10=*. We also found that |u2(0,z) —
u3(0,2)|2 = 0.0043. Even though there was an improvement in the residuals,
there was no perceptible improvement visually in the graph of u3(¢, 2) compared
to u?(t, z).

The probability densities p°(r,v) and distribution P°(r, v) are shown in Fig-
ures 8 and 9 respectively. The densities and distributions for p! are not shown
here because the difference between p® and p! is not perceptible to the eye at

16



this resolution. Note that for fixed r, the probability distribution P(y) suggests
a bimodal population density, as obtained in [BF]. The probability densities
p(r, ) do not contribute to this conclusion, and in fact limiting densities them-
selves may not exist for measures in the set {P(g) : ¢ € G} for general infinite
dimensional families G. (see [BF]; the distributions, not the densities, can be
approximated as we have done in these computations.)

o o
i ° N o
a [ w

o
e

Density p(r.y)

Distribution P(r,y)
o o o
o o

o
IS

o
w

o
Y

Figure 9: Probability distribution P]Qk for Example 3.
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